Universal thermodynamics and two-body contact of a Bose gas near the superfluid–Mott-insulator transition

Nicolas Dupuis

Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, 75005, Paris, France

The two-body contact is a fundamental quantity of a dilute Bose gas that relates the thermodynamics to the short-distance two-body correlations. For a Bose gas in an optical lattice, near the superfluid–Mott-insulator transition, we show that a "universal" contact C_{univ} can be defined from the singular part $P - P_{\text{MI}}$ of the pressure (P_{MI} is the pressure of the Mott insulator). Its expression $C_{\text{univ}} = C_{\text{DBG}}(|n - n_{\text{MI}}|, a^*)$ coincides with that of a dilute Bose gas provided we consider the effective "scattering length" a^* of the quasi-particles at the quantum critical point (QCP) rather than the scattering length in vacuum, and the excess density $|n - n_{\text{MI}}|$ of particles (or holes) with respect to the Mott insulator. Close to the transition, we find that the singular part $n_{\mathbf{k}}^{\text{sing}} = n_{\mathbf{k}} - n_{\mathbf{k}}^{\text{MI}}$ of the momentum distribution exhibits a high-momentum tail of the form $Z_{\text{QP}}C_{\text{univ}}/|\mathbf{k}|^4$ over a broad region of the Brillouin zone, where Z_{QP} is the quasi-particle weight of the elementary excitations at the QCP. Our results demonstrate that the notion of contact extends to strongly correlated lattice bosons.

^[1] M. Bhateja, N. Dupuis, and A. Rançon, Two-body contact of a Bose gas near the superfluid–Mott-insulator transition, Phys. Rev. A 112, L041301 (2025).